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1 Priors in Bayesian Estimation

1.1 Recap: Bayesian estimation

Last time, we introduced Bayes estimation, where we want to minimize the Bayes risk

RBayes(Λ; s) =

∫
Ω
R(θ; s) dΛ(θ)

= E[L(Θ; δ(X))],

where Θ ∼ Λ and X | Θ = θ ∼ Pθ.
The Bayes estimator δΛ(x) minimizes

E[L(Θ; d) | X = x]

in d. If we have a prior density λ(θ) and a likelihood pθ(x), then we get the posterior
density

λ(θ | x) =
λ(θ)pθ(x)∫
λ(θ)pθ(x) dx

.

Example 1.1 (Beta-Binomial). In this example, X | θ ∼ Binom(n, θ) = θx(1 − θ)1−x(n
x

)
with the prior θ ∼ Beta(α, β) = θα−1(1− θ)β−1 Γ(α)Γ(β)

Γ(α+β) . The posterior distribution is

λ(θ | x) ∝θ θx+α−1(1− θ)β−1

∝ Beta(α+ x− 1, β + n− x− 1)

It follows that

E[Θ | X] =
X + α

n+ α+ β

is the Bayes estimator for the squared error loss.

We also had a normal location family with a normal prior which gave us a normal
posterior, as well.
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1.2 Conjugate priors

Definition 1.1. If the posterior is from the same family as the prior, we say the prior
(family) is conjugate to the likelihood.

Suppose Xi | η
iid∼ pη(x) = eη

>T (x)−A(η)h(x) for i = 1, . . . n, with η ∈ Ξ1 ⊆ Rs. For some
carrier density λ0(η), define the (s+ 1)-parameter exponential family.

λkµ,k(η) = ekµ
>η−kA(η)−B(kµ,k)λ0(η).

The sufficient statistic is

[
η

−A(η)

]
with natural parameter

[
kµ
k

]
. If we take λkµ,k as our

prior, then

λ(η | X1, . . . , Xn) ∝η ekµ
>η−kA(η) λ0(η) ·

n∏
i=1

eη
>T (xi)−A(η)

= exp
(

(kµ+ nT (x))>η − (k + n)A(η)
)
λ0(η)

∝η λkµ+nT ,k+n(η).

Here is the interpretation:

1. Suppose we take the prior λkµ,k and observe X1. Then the posterior is λkµ+X1,k+1.

2. Now observe X2 and update the posterior to get λkµ+X1+X2,k+2.

3. . . .

If we have a (possibly improper) prior λ0 and make k+n observations with
∑

i T (Xi) =
kµ + s, this is the same as if we had the prior λkµ,k and observe n observations with∑

i T (Xi) = s.

Example 1.2. Here is a list of some conjugate priors:

Likelihood Prior

Binom(n, θ) θ ∼ Beta(α, β)
N(θ, σ2) θ ∼ N(µ, τ2)
Pois(θ) θ ∼ Gamma(ν, s)

People will say that the Beta, for example, is the conjugate prior to the Binomial.
There can be more than one conjugate prior, which we can get just by changing the carrier
distribution.
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1.3 Types of priors

Bayesian estimation requires us to have a prior distribution we believe in. In what ways
do we do this?

1. Direct prior or parallel experience: We can estimate the prior from data. If
there is a broad agreement on the prior, corresponding to many observations, the
prior may be more meaningful. This gives rise to the following types of Bayesian
estimation:

– Hierarchical Bayes

– Empirical Bayes

2. Subjective beliefs:1 Here, the prior represents epistemic uncertainty, and the pos-
terior is uncertainty ex post, after observing data and rationally updating.

3. Convenience prior: Generally, we have to calculate posteriors. If dim(Ω) is large,
the posterior is ≈ 0 for most of Ω. This can make it computationally difficult to
perform Bayesian estimation, so we might pick a prior which makes the calculation
easier, such as a conjugate prior.

4. “Objective” prior: We may try to pick a prior which seems to not represent our
individual opinion.

Example 1.3. Suppose Xi | θ ∼ N(θ, 1) for i = 1, . . . , n. We could try to use a flat
prior: λ(θ) ∝θ 1. This prior is is not a probability distribution, but we can still use
it because it gives a valid posterior:

λ(θ)pθ(x) ∝θ eθ
∑

i xi−nθ2/2

∝θ N(x, 1/n).

The Bayes estimator is X. The posterior arises naturally as taking taking a limit of
priors: limτ2→∞N(0, τ).

The issue with a flat prior is that this is not invariant to reparameterization of the
model.

Example 1.4. Let X ∼ Binom(n,Θ) with Θ ∼ U [0, 1]. Then

P(Θ ∈ [0.5, 0.51]) = P(Θ ∈ [0.0001, 0.0101]) = 0.01.

If we let η = log Θ
1−Θ , then

P(Θ ∈ [0.5, 0.51]) ≈ P(η ∈ [0, 0.01]),

while
P(Θ ∈ [0.0001, 0.0101]) = P(η ∈ [log 0.001, log 0.1]).

1One may call this the “hardcore” Bayesian perspective.
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Jeffreys proposed using λ(θ) ∝θ |J(θ)|1/2. This is called the Jeffreys prior, which
is invariant under reparameterization. However, the Jeffreys prior can have less of a
claim to being agnostic. In the normal case, the Jeffreys prior is the flat prior, but
in the binomial case, the Jeffreys prior looks like this:

Remark 1.1. There has been some controversy about Bayesian vs frequentist statistics.
Historically, frequentist statisticians tend to give objections of the form “The object of
interest (such as the number of elephants in Africa2) is not actually random!” However, if
you flip a coin and don’t yet look at the result, even though the outcome is certain, there
is still epistemic uncertainty about the result.

The Bayesian perspective has the advantage (and disadvantage) of being able to ex-
press vague intuitions. Ultimately, making a decision in government may require different
statistics from writing a scientific paper. But subjective beliefs and intuitions can often be
incorrect.

A practical issue is that it is very difficult to express an opinion of a joint distribution
of many random variables.

2The elephants in Africa are just standing around, waiting to be counted.
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